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Outline
• Motivation

• How to get inclusive processes from 4pt functions

• What makes these calculations hard?

‣ Algorithmic, theoretical, and practical challenges

• Review of some recent proposals 

• My (biased) view of prospects
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Experimental Tension
Tension between inclusive/exclusive determinations of
• |Vcb| from B ➞ D*ℓ𝜈 has 3.3𝜎 tension
• |Vcb| from B ➞ Dℓ𝜈 has 2.0𝜎 tension
• |Vub| from B ➞ 𝜋ℓ𝜈 has 2.8𝜎 tension
The most precise theoretical calculations employ 
different frameworks
• Inclusive decays: continuum heavy quark EFT + 

operator product expansion

• Exclusive decays: numerical lattice gauge theory
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➞ See previous talk from A. Vaquero for details

➞ See talks from T. Mannel, M. Steinhauser for details



Exclusive semileptonic decays from LQCD 
(See previous talk by A. Vaquero)

• Methodology is well established
• Systematic effects are well understood
• Calculations are underway using physical quark 

masses: u, d, s, c, and b.
• Coming soon: 
» B-meson decay form factors at the 1% level
» D-meson decay form factors at sub-percent level 
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(form factors) ∝ (matrix elements)



Frontier LQCD calculations
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The physics of Euclidean correlation functions:
• 2-point functions: masses, decay constants
• 3-point functions: form factors

• 4-point functions:
‣ Flavor physics: Inclusive B-meson decays
‣ Neutrino physics: νA-scattering, 0νββ-decay
‣ Hadron structure: PDFs or hadronic tensor Hμν

‣ Kaon physics: KL-KS mixing, εK, rare kaon decays
‣ … many others
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The physics of Euclidean correlation functions 
• 2-point functions: masses, decay constants
• 3-point functions: form factors
• 4-point functions:

B X

Sum over all  
hadronic  

final states X

Frontier LQCD calculations
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The physics of Euclidean correlation functions 
• 2-point functions: masses, decay constants
• 3-point functions: form factors
• 4-point functions:

B X BX

Frontier LQCD calculations
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The physics of Euclidean correlation functions 
• 2-point functions: masses, decay constants
• 3-point functions: form factors
• 4-point functions:

B X BX

• In quantum mechanics:

Frontier LQCD calculations
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The physics of Euclidean correlation functions 
• 2-point functions: masses, decay constants
• 3-point functions: form factors
• 4-point functions:

Automatic sum over 
intermediate states X

B B

J†J

“Hadronic tensor” 
⟺ structure functions

Frontier LQCD calculations



Connection to observables
• Experiments measure rates and cross sections 

B X
pB pX

q = pB - pX

Leptonic tensor 
(know analytically)

Hadronic tensor: target for LQCD  
Basically: 

“(Lorentz stuff) x (invariant functions)”



Technical challenges
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• Algorithmic: how to compute challenging 4pt functions 
efficiently using Monte Carlo techniques?

• Theoretical: how to relate Euclidean correlation functions 
to physical kinematic regime in Minkowski space?

• Practical: how to analyze finite, discrete simulation 
results for best precision?



Technical challenges
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• Algorithmic: how to compute challenging 4pt functions 
efficiently using Monte Carlo techniques?

‣ 4pt functions require careful numerical treatment for 
all-to-all fermion propagators

‣ Ex: State-of-the-art calculation of HLbL for (g-2)
‣ T. Blum et al., PRL 124 (2020) 13, 132002



Technical challenges
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• Theoretical: how to relate Euclidean correlation functions 
to physical kinematic regime in Minkowski space?

• Practical: how to analyze finite, discrete simulation 
results for best precision?



Back to Minkowski space
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• “Wick rotation” requires an inverse Laplace transform
• For finite simulation data, the problem is ill-posed
• Progress requires good theoretical ideas

Kernel 

function

Euclidean 

correlator Physical


“spectral density”

Ill-posed, since Tij 

is not square (i≪j)



Quantum Mechanics in a Box

!16



𝝎

…

C(𝝎)

E0 E1 …

Quantum Mechanics in a Box
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Laplace transform

Or for inclusive B-decays:



𝝎

…

C(𝝎)

E0 E1 …

Quantum Mechanics in a Box
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• This situation is completely generic
• Systems in a box have discrete energy levels

Laplace transform



• What about hadronic tensor W(𝝎, q)?
• Elastic channel:
• Inelastic thesholds:

Quantum Mechanics in a Box
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𝝎

C(𝝎)

M

Physical In a box

𝝎

C(𝝎)

M



• Somehow must connect these two pictures
• Try smearing
• (Actual methods quite different, but a classic idea)

Quantum Mechanics in a Box
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Some recent proposals
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Inclusive decays, specifically

‣ M.T. Hansen, Meyer, Robaina: PRD 96 (2017) 9, 094513. arXiv:
1704.08993

‣ Hashimoto PTEP (2017) 5, 053B03, arXiv:1703.01881

‣ Gambino and Hashimoto: PRL 125 (2020) 3, 032001. arXiv:
2005.13730  ➞ See next talk from P. Gambino

General aspects of the inverse problem

‣ M. Hansen, Lupo, and Tantalo PRD 99 (2019) 9, 094508. arXiv:
903.06476

‣ M. Bruno and M.T. Hansen: arXiv:2012.11488
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Backus-Gilbert reconstruction



Backus-Gilbert reconstruction
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In a box

𝝎

C(𝝎)

MN



Backus-Gilbert reconstruction
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In a box

𝝎

C(𝝎)

M

Smearing kernel = Regulated 𝜹-function



In a box

𝝎

C(𝝎)

M

Backus-Gilbert reconstruction
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Smearing kernel = Regulated 𝜹-function



In a box

𝝎

C(𝝎)

M

Backus-Gilbert reconstruction
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In a box

𝝎

C(𝝎)
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Backus-Gilbert reconstruction
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Smearing kernel = Regulated 𝜹-function



In a box

𝝎

C(𝝎)

M

Backus-Gilbert reconstruction
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Smearing kernel = Regulated 𝜹-function



Backus-Gilbert reconstruction
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In a box: exact

𝝎

C(𝝎)

M

In a box: regulated

𝝎

CΔ(𝝎)

M

Smearing kernel = Regulated 𝜹-function



In a box: regulated

𝝎

CΔ(𝝎)

M

Backus-Gilbert reconstruction
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• Take limit to reach physical result

𝝎

C(𝝎)

M

Physical



1. Start with basic problem

2. Ansatz for solution

3. Constraints? Put 1➞2
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Backus-Gilbert reconstruction



1. Start with basic problem

2. Ansatz for solution

3. Constraints? Put 1➞2

4. Identify a delta function

5. If suitable q are found, Ansatz gives the solution:
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Backus-Gilbert reconstruction



•Backus Gilbert: “Choose q to minimize width of 𝜹Δ”

•Regulate problem with the covariance matrix “S”:

•Backus-Gilbert gives a prescription for defining the 
smearing kernel. The data determine its shape.

•𝝀 is a free parameter. The shape of 𝜹 is not.
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Backus-Gilbert reconstruction
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Backus-Gilbert reconstruction

Fig. 5 of M.T. Hansen, 
Meyer, Robaina 
arXiv:1704.08993

•■/■/■/■: regulated 𝜹Δ(𝝎) (=     ) for different 𝝀

(Using mock data from 
exactly treatable toy 
model)
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Backus-Gilbert reconstruction

Fig. 6 of M.T. Hansen, Meyer, Robaina 
arXiv:1704.08993

•Black line: Exact result for toy problem

•Backus-Gilbert smearing

“To this end we reemphasize 
that one may also smear 
experimental or model data 
with the same resolution 
function to perform a fully 
controlled comparison.”



Backus-Gilbert reconstruction
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• Ill-posed nature of unregulated problem ⟺   
Results are very sensitive to small changes in data

• Phrase inversion problem as convex optimization

• Find kernel 𝜹Δ which minimizes the width functional

• Then work with smeared function CΔ(𝝎)

• Upshots:
 Smearing regulates and stabilizes the inversion
 Smearing connects finite-volume to continuum



Hansen, Lupo, & Tantalo
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PRD 99 (2019) 9, 094508, arXiv:1903.06476



•Observation: It would be nice to be able to choose 

the smearing kernel.

• Idea: choose a different functional from BG

•As before, regulate with data covariance matrix

Hansen, Lupo, & Tantalo
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Minimize:



•Blue curve: target smearing function

•Red curve: HLT 𝜹Δ(𝝎)

•Yellow curve: difference

Hansen, Lupo, & Tantalo
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Fig. 3 of Hansen, Lupo, Tantalo  
arXiv:1903.06476



•Black line: Exact smeared result for toy problem

•Backus-Gilbert smearing

•HLT smearing

Hansen, Lupo, & Tantalo
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Fig. 6 of Hansen, Lupo, Tantalo  
arXiv:1903.06476



Orthogonal polynomials
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➞ See next talk from P. Gambino for details



•Recall: want 

•Have: 

•Actually want smeared version:

Orthogonal polynomials
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z = e-H = transfer matrix



•Smearing kernel is arbitrary / we can pick

•Choose, say, gaussian of width Δ

•Try expanding in orthogonal polynomials

Orthogonal polynomials
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Easy “Jackson” problem to 

compute coefficients cj(𝝎)

for any desired kernel

Matrix elements ❬Tj(z)❭

are just linear combos of 

❬zt❭, which is what we have!



•Computing ❬TN(z)❭ for order N requires C(t) on N 

different time slices C(1), C(2), … C(N)

Orthogonal polynomials
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•Computing ❬TN(z)❭ for order N requires C(t) on N 

different time slices C(1), C(2), … C(N)

•Kernel choice is completely arbitrary

•Could use Gaussian or dipole

•Could also use “leptonic tensor” for process of 

interest

Orthogonal polynomials
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Summary
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• Understanding the discrepancy between inclusive and 
exclusive determinations of CKM elements is a long-
standing problem

• Frontier calculations using numerical lattice QCD hold the 
promise of determining matrix elements for inclusive 
decays of B-mesons non-perturbatively

• The techniques developed will have broad applications 
throughout hadronic physics

• Reaching physical kinematics from Euclidean space 
requires solving a delicate inverse problem

• Look for important progress over the next 5-10 years.


